Abstract

Few-cycle optical excitation of nanosystems holds promise of fundamental discoveries and applications in ultrafast nanoscience, the development of nanostructured photocathodes, and many more. For these, surface plasmon generation on unprecedented timescales needs to be controlled. For this, few-cycle plasmon oscillations on a metal nanoparticle can be generated by keeping considerable electric field enhancement factors. As an initial application of such a high spatiotemporal localization of an ultrashort laser pulse, we numerically demonstrate the control of photoelectrons on a true sub-fs timescale in nanometric spatial domains. We show that it is only off-resonant nanoparticles that can provide few-cycle plasmons and electron control on this timescale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call