Abstract
Increase in body temperature has been thought to play an important role in the regulation of immune responses, although its precise mechanisms are still under investigation. Here, we examined the effects of physiologically relevant thermal stress on the cytokine production from human peripheral T cells. Volunteers were heated using a whole-body hyperthermia device, the rectal temperature was maintained above 38.5°C for more than 60min, and peripheral blood mononuclear cells (PBMCs) were obtained before and after the treatment. When T cells were stimulated with anti-CD3/CD28 antibodies, marked increases in the production of interferon-γ (IFN-γ) and interleukin-2 were observed in PBMCs prepared immediately after and 24h after the treatment. Similarly, enhanced production of IFN-γ in response to the tuberculin purified protein derivative or antigenic viral peptides was also observed immediately after and 24h after the treatment. Fluorescence photo-bleaching analyses showed heat-induced increase of membrane fluidity in T cells, which probably enables them to induce rapid and efficient cluster formation of molecules involved in antigen recognition and signal transduction for T-cell stimulation. We concluded that physiologically relevant thermal stress could efficiently modify T-cell responsiveness to various stimuli, including enhanced responses to specific antigens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.