Abstract

Recently, considerable research efforts to achieve advanced design of promising electroactive materials as well as unique structures in supercapacitor electrodes have been explored for high-performance energy storage systems. We suggest the development of novel electroactive materials with an enlarged surface area for sandpaper materials. Based on the inherent micro-structured morphologies of the sandpaper substrate, nano-structured Fe-V electroactive material can be coated on it by facile electrochemical deposition technique. A hierarchically designed electroactive surface is covered with FeV-layered double hydroxide (LDH) nano-flakes on Ni-sputtered sandpaper as a unique structural and compositional material. The successful growth of FeV-LDH is clearly revealed by surface analysis techniques. Further, electrochemical studies of the suggested electrodes are carried out to optimize the Fe-V composition as well as the grit number of the sandpaper substrate. Herein, optimized Fe0.75V0.25 LDHs coated on #15000 grit Ni-sputtered sandpaper are developed as advanced battery-type electrodes. Finally, along with the negative electrode of activated carbon and the FeV-LDH electrode, it is utilized for hybrid supercapacitor (HSC) assembly. The fabricated flexible HSC device indicates high energy and power density by showing excellent rate capability. This study is a remarkable approach to improving the electrochemical performance of energy storage devices using facile synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.