Abstract

In this paper, a class of FETI-DP preconditioners is developed for a fast solution of the linear system arising from staggered discontinuous Galerkin discretization of the two-dimensional Stokes equations. The discretization has been recently developed and has the distinctive advantages that it is optimally convergent and has a good local conservation property. In order to efficiently solve the linear system, two kinds of FETI-DP preconditioners, namely, lumped and Dirichlet preconditioners, are considered and analyzed. Scalable bounds C(H/h) and C(1+log(H/h))2 are proved for the lumped and Dirichlet preconditioners, respectively, with the constant C depending on the inf–sup constant of the discrete spaces but independent of any mesh parameters. Here H/h stands for the number of elements across each subdomain. Numerical results are presented to confirm the theoretical estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.