Abstract

Remodeling of the uterine spiral arteries during pregnancy transforms them from high to low resistance vessels that lack vasoconstrictive properties. This process is essential to meet the demand for increased blood flow imposed by the growing fetus. Loss of endothelial and smooth muscle cells (SMC) is evident in remodeled arteries but the mechanisms underlying this transformation remain unknown. This study investigated the hypothesis that fetal trophoblast invading from the placenta instigate remodeling by triggering cell death in vascular SMC. Specifically, a role for trophoblast-derived death inducing cytokine tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) was investigated. Expression of the activating TRAIL receptors R1 and R2 was detected by flow cytometry on human aortic SMC and by immunohistochemistry on spiral artery SMC. Recombinant human TRAIL induced human aortic SMC apoptosis, which was inhibited by antibodies against TRAIL-R1 or -R2. Perfusion of denuded spiral artery segments with recombinant human TRAIL also induced SMC apoptosis. Trophoblasts isolated from first trimester placenta expressed membrane-associated TRAIL and induced apoptosis of human aortic SMC; apoptosis was significantly inhibited by a recombinant human TRAIL-R1:Fc construct. Trophoblast within the first trimester placental bed also expressed TRAIL. These data show that: 1) TRAIL causes SMC death; 2) trophoblast produce the apoptotic cytokine TRAIL; and 3) trophoblast induce SMC apoptosis via a TRAIL-dependent mechanism. We conclude that TRAIL produced by trophoblast causes apoptosis of SMC and thus may contribute to SMC loss during spiral artery remodeling in pregnancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.