Abstract

BackgroundAccurate estimation of fetal weight is important for prenatal care and for detection of fetal growth abnormalities. Prediction of fetal weight entails the indirect measurement of fetal biometry by ultrasound that is then introduced into formulae to calculate the estimated fetal weight. The aim of our study was to evaluate the accuracy of fetal weight estimation of Chinese fetuses in the third trimester using an automated three-dimensional (3D) fractional limb volume model, and to compare this model with the traditional two-dimensional (2D) model.MethodsProspective 2D and 3D ultrasonography were performed among women with singleton pregnancies 7 days before delivery to obtain 2D data, including fetal biparietal diameter, abdominal circumference and femur length, as well as 3D data, including the fractional arm volume (AVol) and fractional thigh volume (TVol). The fetal weight was estimated using the 2D model and the 3D fractional limb volume model respectively. Percentage error was defined as (estimated fetal weight - actual birth weight) divided by actual birth weight and multiplied by 100. Systematic errors (accuracy) were evaluated as the mean percentage error (MPE). Random errors (precision) were calculated as ±1 SD of percentage error. The intraclass correlation coefficient (ICC) was used to analyze the inter-observer reliability of the 3D ultrasound measurements of fractional limb volume.ResultsUltrasound examination was performed on 56 fetuses at 39.6 ± 1.4 weeks’ gestation. The average birth weight of the newborns was 3393 ± 530 g. The average fetal weight estimated by the 2D model was 3478 ± 467 g, and the MPE was 3.2 ± 8.9. The average fetal weights estimated by AVol and TVol of the 3D model were 3268 ± 467 g and 3250 ± 485 g, respectively, and the MPEs were − 3.3 ± 6.6 and − 3.9 ± 6.1, respectively. For the 3D TVol model, the proportion of fetuses with estimated error ≤ 5% was significantly higher than that of the 2D model (55.4% vs. 33.9%, p < 0.05). For fetuses with a birth weight < 3500 g, the accuracy of the AVol and TVol models were better than the 2D model (− 0.8 vs. 7.0 and − 2.8 vs. 7.0, both p < 0.05). Moreover, for these fetuses, the proportions of estimated error ≤ 5% of the AVol and TVol models were 58.1 and 64.5%, respectively, significantly higher than that of the 2D model (19.4%) (both p < 0.05). The inter-observer reliability of measuring fetal AVol and TVol were high, with the ICCs of 0.921 and 0.963, respectively.ConclusionIn this cohort, the automated 3D fractional limb volume model improves the accuracy of weight estimation in most third-trimester fetuses. Prediction accuracy of the 3D model for neonatal BW, particularly < 3500 g was higher than that of the traditional 2D model.

Highlights

  • Accurate estimation of fetal weight is important for prenatal care and for detection of fetal growth abnormalities

  • Patient characteristics A total of 56 pregnant women with a single fetus were examined by ultrasound within 7 days before delivery

  • The results showed that there was no statistical difference in the accuracy of fetal weight estimation between the 3D fractional limb volume models and the traditional Hadlock 2D model, while the 3D models had low random error and higher precision

Read more

Summary

Introduction

Accurate estimation of fetal weight is important for prenatal care and for detection of fetal growth abnormalities. The birth weight (BW) of newborns is intimately related to the maternal and perinatal prognosis. Ultrasound measurement of fetal head, abdominal circumference, femoral length and other parameters to estimate fetal weight reflects fetal intrauterine nutrition, and is an important aspect of prenatal care. With the development of threedimensional (3D) ultrasound technology, limb volumes have gradually been incorporated into fetal weight estimation models [9,10,11,12]. Lee et al [10] proposed the concept of fractional limb volume, which was added to the new weight prediction models as a fetal soft tissue parameter

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call