Abstract

The responses of the central (CNS) and peripheral (PNS) nervous system to axotomy differ in a number of ways; these differences can be observed in both the cell body responses to injury and in the extent of regeneration that occurs in each system. The cell body responses to injury in the PNS involves the upregulation of genes that are not upregulated following comparable injuries to CNS neurons. The expression of particular genes following injury may be essential for regeneration to occur. In the present study, we have evaluated the hypothesis that expression of the inducible transcription factor c-Jun is associated with regrowth of axotomized CNS neurons. In these experiments, we compared c-Jun expression in axotomized brainstem neurons after thoracic spinal cord hemisection alone (a condition in which no regrowth occurs) and in groups of animals where hemisections were combined with treatments such as transplants of fetal spinal cord tissue and/or application of neurotrophic factors to the lesion site. The latter conditions enhance the capacity of the CNS for regrowth. We have demonstrated that hemisections alone do not upregulate expression of c-Jun, indicating that this particular cell body response is not a direct result of axotomy. However, c-Jun expression is upregulated in animals that received application of transplants and neurotrophins. Because these interventions also promote sprouting and regrowth of CNS axons after spinal cord lesions, we suggest that transplants and exogenous neurotrophic factor application activate a cell body response consistent with a role for c-Jun in axonal growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call