Abstract

Fetal growth restriction (FGR) is a risk factor for adult cardiovascular disease. Intraplacental gene transfer of human insulin-like growth factor-1 (IGF-1) corrects birth weight in our mouse model of FGR. This study addresses long term effects of FGR on cardiac function and the potential preventive effect of IGF-1. Laparotomy was performed on pregnant C57BL/6J mice at embryonic day 18 and pups were divided into three groups: Sham operated; FGR (induced by mesenteric uterine artery ligation); treatment (intraplacental injection of IGF-1 after uterine artery ligation). Pups were followed until 32 wk of life. Transthoracic echocardiography was performed starting at 12 wk. Systolic cardiac function was significantly impaired in the FGR group with reduced fractional shortening compared with sham and treatment group starting at week 12 of life (20 ± 4 vs. 31 ± 5 vs. 32 ± 5, respectively, n = 12 for each group; P < 0.001) with no difference between the sham and treatment groups. Intraplacental gene transfer of IGF-1 prevents FGR induced cardiac dysfunction. This suggests that in utero therapy may positively impact cardiac remodeling and prevent adult cardiovascular disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.