Abstract

Despite improvements in perinatal care, preterm birth still occurs regularly and the associated brain injury and adverse neurological outcomes remain a persistent challenge. Antenatal magnesium sulfate administration is an intervention with demonstrated neuroprotective effects for preterm births before 32 weeks of gestation (WG). Owing to its biological properties, including its action as an N-methyl-d-aspartate receptor blocker and its anti-inflammatory effects, magnesium is a good candidate for neuroprotection. In hypoxia models, including hypoxia-ischemia, inflammation, and excitotoxicity in various species (mice, rats, pigs), magnesium sulfate preconditioning decreased the induced lesions’ sizes and inflammatory cytokine levels, prevented cell death, and improved long-term behavior. In humans, some observational studies have demonstrated reduced risks of cerebral palsy after antenatal magnesium sulfate therapy. Meta-analyses of five randomized controlled trials using magnesium sulfate as a neuroprotectant showed amelioration of cerebral palsy at 2 years. A meta-analysis of individual participant data from these trials showed an equally strong decrease in cerebral palsy and the combined risk of fetal/infant death and cerebral palsy at 2 years. The benefit remained similar regardless of gestational age, cause of prematurity, and total dose received. These data support the use of a minimal dose (e.g., 4 g loading dose ± 1 g/h maintenance dose over 12 h) to avoid potential deleterious effects. Antenatal magnesium sulfate is now recommended by the World Health Organization and many pediatric and obstetrical societies, and it is requisite to maximize its administration among women at risk of preterm delivery before 32 WG.

Highlights

  • Preterm brain injury remains a crucial and unresolved issue among neonatologists

  • The ensuing cerebral lesions are strongly associated with later cerebral palsy and neurobehavioral developmental disorders

  • Fetal Neuroprotection by Magnesium Sulfate no single neuroprotective intervention is known to prevent preterm brain injury, neuroprotective strategies should be adopted to reduce the risk of neurodevelopmental anomalies in premature newborns

Read more

Summary

INTRODUCTION

Preterm brain injury remains a crucial and unresolved issue among neonatologists. The ensuing cerebral lesions (i.e., brain injury related to encephalopathy of prematurity, including white matter injury, periventricular leukomalacia, and intraventricular/intraparenchymal hemorrhage) are strongly associated with later cerebral palsy and neurobehavioral developmental disorders. The mechanisms leading to these forms of brain injury are numerous and may include inflammation or ischemic insult. Fetal Neuroprotection by Magnesium Sulfate no single neuroprotective intervention is known to prevent preterm brain injury, neuroprotective strategies should be adopted to reduce the risk of neurodevelopmental anomalies in premature newborns. One such intervention is antenatal administration of magnesium sulfate (MgSO4) in women at risk of preterm birth. This mini review discusses the benefits of antenatal MgSO4 administration for fetal neuroprotection

Biological Properties
Neuroprotective Effects of Magnesium in Preclinical Studies
OBSERVATIONAL STUDIES
PREMAG Trial
Cerebral palsya
IMPLEMENTATION OF MAGNESIUM IN NEUROPROTECTIVE PROTOCOLS WORLDWIDE
Findings
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call