Abstract

Our aim was to determine the effects of prolonged removal of fetal urine during late gestation on fetal-maternal fluid and electrolyte relationships. We measured the volume and composition of fetal urine and amniotic and allantoic fluids and the composition of fetal and maternal plasma in sheep before and during continuous urine drainage, which began at 130 days of gestation and continued until the onset of labor; a control group was also studied. The response to fetal urine drainage occurred in two phases. In the "acute" phase (1-3 days), amniotic and allantoic fluid volumes decreased significantly, presumably due to their reabsorption into the fetal chorionic circulation or swallowing of amniotic fluid by the fetus. During the "chronic" phase, starting 3-5 days after urine drainage, a significant reversal in the transplacental osmotic gradient occurred due to a decrease in maternal plasma osmolality. During the entire drainage period (14.1 +/- 1.1 days, mean +/- SE, n = 5) at least 542 ml/day of water and 24 mmol/day of electrolytes passed from the mother into the fetal circulation and fetal plasma osmolality was unchanged. We conclude that, despite the loss of substantial water and electrolytes, the fetus is able to maintain its growth and fluid and electrolyte homeostasis by obtaining water and electrolytes initially from the amniotic and allantoic fluids and subsequently from its mother. The movement of water and electrolytes to the fetus would have been facilitated by the reversed transplacental osmotic gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.