Abstract

The premature rupture of the amniotic sac, a condition referred to as a preterm prelabor rupture of membranes (pPROM), is a leading cause of preterm birth. In some cases, these ruptured membranes heal spontaneously. Here, we investigated repair mechanisms of the amnion, a layer of epithelial cells in the amniotic sac closest to the embryo. Macrophages migrated to and resided at rupture sites in both human and mouse amnion. A process called epithelial-mesenchymal transition (EMT), in which epithelial cells acquire a mesenchymal phenotype and which is implicated in tissue repair, was observed at rupture sites. In dams bearing macrophage-depleted fetuses, the repair of amnion ruptures was compromised, and EMT was rarely detected at rupture sites. The migration of cultured amnion epithelial cells in wound healing assays was mediated by EMT through transforming growth factor-β (TGF-β)-Smad signaling. These findings suggest that fetal macrophages are crucial in amnion repair because of their ability to induce EMT in amnion epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.