Abstract

This paper presents an algorithm for classification of fetal health status using fetal heart rate variability (fHRV) analysis through phonocardiography. First, the fetal heart sound signals are acquired from the maternal abdominal surface using a specially developed Bluetooth-based wireless data recording system. Then, fetal heart rate (FHR) traces are derived from these signals. Ten numbers of linear and nonlinear features are extracted from each FHR trace. Finally, the multilayer perceptron (MLP) neural network is used to classify the health status of the fetus. Results show very promising performance toward the prediction of fetal wellbeing on the set of collected fetal heart sound signals. Finally, this work is likely to lead to an automatic screening device with additional potential of predicting fetal wellbeing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.