Abstract

The maternal endocrine stress system is profoundly altered during the course of human pregnancy. The human placenta expresses the genes for CRH as early as the seventh week of gestation and it is the expotential increase in placental CRH (pCRH) over the course of human gestation that is responsible for the greatest modification in the maternal stress system. The bi-directional placental release of hormones into the maternal and fetal compartments has profound influences for both. The influential Fetal Programming model predicted that early or fetal exposures to maternal signals of threat or adverse conditions have lifelong consequences for health outcomes. A basic assumption of this model was that developing organisms play a dynamic role in their own construction. Data are reviewed and new data are presented that elevated pCRH over the course of human gestation plays a fundamental role in the organization of the fetal nervous system, modifies birth phenotype (the timing of the onset of spontaneous labor and delivery), and influences developmental, temperamental and metabolic trajectories. Evidence for sex differences and conserved function across species is presented. Finally, a model is presented that proposes several pathways that pCRH can program risk for health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.