Abstract

Lately, it has become clear that regulatory T cells (Tregs) play a major role in the maintenance of peripheral tolerance and control of autoimmunity. Despite these critical functions, the process underlying the development of Tregs remains largely undefined. Herein, altered peptide ligand (APL) variants derived from the proteolipid protein-1 (PLP1) epitope were expressed on immunoglobulins (Igs) and the resulting Ig-APLs were used to deliver the APLs from mother to fetus through the maternal placenta to influence thymic T cell selection. This delivery system was then adapted to the SJL/J mouse, a strain that expresses only the DM20 form of PLP, which lacks the dominant PLP1 epitope in the thymus during fetal and neonatal development. This model, which restores thymic T cell selection for PLP1, was then used to determine whether affinity plays a role in the development of Tregs. The findings show that fetal exposure to low-affinity peptide ligand was unable to drive development of Tregs while variants with higher affinity to the TCR resulted in significant seeding of the periphery with mature, naive Tregs. Thus, contrary to pathogenic T cells, Tregs require avid TCR-ligand interaction to undergo thymic development and maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.