Abstract

Standard protocols to generate mouse dendritic cells (DC) generally use culture medium supplemented with fetal calf serum; however, reinjection in vivo of DC cultured in fetal calf serum results in priming to xenogeneic proteins that clearly limits the use of such DC. We therefore established a fetal calf serum-free culture system for the generation of murine DC from bone marrow precursors. DC can be generated fetal calf serum-free using RPMI supplemented with 1.5% syngeneic mouse serum. Although the yield of DC grown under fetal calf serum-free conditions was somewhat lower than that of the standard culture, large numbers of DC could be generated without the exposure to xenogeneic proteins. The yield of fetal calf serum-free cultured DC was further enhanced by addition of the proinflammatory cytokines TNF-alpha and IL-1beta with the combination resulting in up to 10% more DC. Phenotypically, CD11c + DC cultured fetal calf serum-free homogenously coexpressed the DC-specific molecule DEC-205 as well as the costimulatory molecules CD40, CD80, and CD86. In contrast, only a subpopulation of the CD11c + DC cultured in fetal calf serum-containing medium coexpressed these molecules. Functionally, fetal calf serum-free DC showed strong stimulatory capacity for naïve allogeneic CD4 + and CD8 + T cells. Importantly, fetal calf serum-free DC showed spontaneous in vivo migratory activity. Moreover, 5 x 105 subcutaneously injected TNBS-conjugated fetal calf serum-free DC were able to mediate contact sensitivity. Furthermore, the intravenous or subcutaneous injection of a single dose of 5 x 105 OVA-pulsed fetal calf serum-free DC resulted in the induction of an OVA-specific immune response in naïve TCR transgenic animals. Thus DC cultured under fetal calf serum-free conditions are suitable instruments for in vivo therapeutic approaches, especially in autoimmune models. DC vaccines/dendritic cell development/fetal calf serum-free culture conditions for DC/in vivo therapeutic DC approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.