Abstract

In documents, maternal betaine modulates hypothalamic cholesterol metabolism in chicken posthatchings, but it remains unclear whether this effect can be passed on by generations. In present study, eggs were injected with saline or betaine at 2.5 mg/egg, and the hatchlings (F1) were raised under the same condition until sexual maturation. Both the control group and the betaine group used artificial insemination to collect sperm from their cockerels. Fertilized eggs were incubated, and the hatchlings of the following generation (F2) were raised up to 64 D of age. F2 cockerels in betaine group showed significantly (P < 0.05) lower body weight, which was associated with significantly decreased (P < 0.05) hypothalamic content of total cholesterol and cholesterol ester. Concordantly, hypothalamic expression of cholesterol biosynthetic genes, SREBP2 and HMGCR, were significantly downregulated (P < 0.05), together with cholesterol conversion-related and excretion-related genes, CYP46A1 and ABCA1. These changes coincided with a significant downregulation in mRNA expression of regulatory neuropeptides including brain-derived neurotrophic factor, neuropeptide Y, and corticotropin-releasing hormone. Moreover, genes involved in methyl transfer cycle were also modified. Betaine homocysteine methyltransferase (P < 0.05) was downregulated, yet DNA methyltransferase1 tended to be upregulated (P = 0.06). S-adenosyl methionine/S-adenosylhomocysteine ratio was higher in the hypothalamus of betaine-treated F2 cockerels, which was associated with significantly modified CpG methylation on the promoter of those affected genes. These results suggested that betaine might regulate central cholesterol metabolism and hypothalamic expression of genes related to brain function by altering promoter DNA methylation in F2 cockerels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.