Abstract

The indium thiospinels In2S3 and MgIn2S4 are promising host for the intermediated band (IB) photovoltaic materials due to their ideal band gap value. Here, the optical properties and electronic structure of Fe-doped In2S3 and MgIn2S4 have been investigated. All the Fe-substituted semiconductors exhibit two additional absorption bands at about 0.7 and 1.25 eV, respectively. The results of first-principles calculations revealed that the Fe substituted at the octahedral In site would introduce a partially filled IB into the band gap. Thanks to the formation of IB, the Fe-substituted semiconductors have the ability to absorb the photons with energies below the band gap. With the wide-spectrum absorption of solar energy, these materials possess potential applications in photovoltaic domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.