Abstract

A model of strongly interacting and correlated hadrons is developed. The interaction used contains a long range attraction and short range repulsive hard core. Using this interaction and various limiting situations of it, a study of the effect of bound states and Feshbach resonances is given. The limiting situations are a pure square well interaction, a delta-shell potential and a pure hard core potential. The limit of a pure hard core potential are compared with results for a spinless Bose and Fermi gas. The limit of many partial waves for a pure hard core interaction is also considered and result in expressions involving the hard core volume. This feature arises from a scaling relation similar to that for hard sphere scattering with diffractive corrections. The role of underlying isospin symmetries associated with the strong interaction of protons and neutrons in this two component model is investigated. Properties are studied with varying proton fraction. An analytic expression for the Beth Uhlenbeck continuum integral is developed which closely approximates exact results based on the potential model considered. An analysis of features associated with a unitary limit is given. In the unitary limit of very large scattering length, the ratio of effective range to thermal wavelength appears as a limiting scale. Thermodynamic quantities such as the entropy and compressibility are also developed. The effective range corrections to the entropy vary as the cube of this ratio for low temperatures and are therefore considerably reduced compared to the corrections to the interaction energy which varies linearly with this ratio. Effective range corrections to the compressibility are also linear in the ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call