Abstract

A facile approach that combines the chemical etching with sulfidation of the sacrificial templates of the Fe-based MOFs is developed to prepare FeS2@ Porous Octahedral Carbon (FeS2@POC). The porous carbon shell can improve the conductivity of active materials, bring a high reversible capacity. Moreover, the void space between carbon and FeS2 can accommodate the volume changes during cycling and the existence of carbon can prevent the aggregation of pulverized FeS2 particles during Li ions insertion/extraction process, which are favorable to gain superior cycling stability. When used as an anode for lithium-ion batteries, the FeS2@POC shows superior electrochemical performance with a high specific capacity, excellent rate performance (381 mAh g−1 at 5000 mA g−1) and good cyclability (1074 mAh g−1 at 100 mA g−1 after 100 cycles, about 99% capacity retention). The results demonstrate that this product may be considered as a promising anode material for advanced lithium-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.