Abstract

Abstract One-dimensional (1D) porous FeS2@C nanowires as a high cathode material for lithium-ion batteries (LIBs) are synthesized on a large-scale from an organic-inorganic hybrid nanowire precursor. The FeS2@C nanowires not only provide a continuous and fast electron transport pathway, favorable diffusion kinetics, but also provide the protection buffer the volume expansion and effectively prevent the polysulfides from dissolving in the electrolyte during cycling. Attributing to the synergistic advantages of both 1D porous nanostructure and the encapsulation of thin amorphous carbon layers, the FeS2@C nanowires exhibit remarkable lithium storage performance with a high specific capacity of 889 mA h g−1 at 0.1 A g−1 and 521 mA h g−1 at 10 A g−1. Moreover, a discharge energy density of 1225 Wh kg−1 is obtained at 2 A g−1 and remains as high as 637 Wh kg−1 after 1000 cycles, which is even higher than the LiCoO2 cathode. The results demonstrate that the potential for applications in LIBs with high power density and long cycling life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.