Abstract

Prenatal lead exposure is associated with poor intellectual development in children. However, there are few breakthroughs in therapeutic intervention of developmental lead neurotoxicity. The aim of this study is to evaluate the hypothesis that ferulic acid-mediated promotion of neurite outgrowth following lead exposure might mainly result from its antioxidant capability by extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Exposure of PC12 cells to lead acetate inhibits neurite outgrowth and causes oxidative stress as measured by ROS, LPO, GSH/GSSG, and NAD+/NADH. FA treatment significantly, although not completely, protected the cells against lead acetate-induced neurite outgrowth inhibition. The effects of FA could be blocked by PD98059, zinc protoporphyrin (Zn-PP), and Nrf2 shRNA. In addition, FA induced heme oxygenase 1 (HO-1) gene expression, enhanced antioxidant response element (ARE) promoter activity, promoted ERK1/2 phosphorylation, and Nrf2 translocation in PC12 cells exposed to lead acetate. ERK1/2 locate upstream of Nrf2 and regulate Nrf2-dependent HO-1 expression in antioxidative effects of FA. Our results suggest that FA is a promising candidate for treatment of developmental lead neurotoxicity. These promising findings warrant future investigation evaluating the FA-mediated potentiation of neurite outgrowth following lead exposure in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.