Abstract

The neuroprotective activities of phenolics have been demonstrated in several studies, with their antioxidant properties playing an influential role. In this study, the therapeutic effect of ferulic acid was investigated on oxidative stress, purinergic and cholinergic enzymatic activities, and dysregulated metabolic pathways in oxidative brain injury. Ferulic acid significantly elevatedthe reduced glutathione (GSH) level, superoxide dismutase and catalase activities, and concomitantly depleted malondialdehyde and nitric oxide level. It also inhibited the activities of acetylcholinesterase and butyrylcholinesterase, and increased the activities of ATPase. LC-MS analysis of the metabolites revealed restoration of most depleted metabolites, with concomitant generation of dihydroferulic acid 4-O-glucuronide, diadenosine heptaphosphate, cis-4-decenoic acid, ganglioside GT3 (d18:0/23:0), phosphatidylinositol-3,4,5-trisphosphate, and phosphoribosyl-ATP on treatment with ferulic acid. Pathway analysis of the identified metabolites revealed reactivation of oxidative-inactivated pathways, with concomitant activation of histidine and inositol phosphate metabolic pathways. There was no cytotoxicity on incubation of ferulic acid with HT22 cells. Molecular docking studies revealed a high affinity for acetylcholinesterase, with a binding energy of - 7.4kcal/mol. In silico simulation analysis predicted permeability of ferulic acid across blood brain barrier (BBB) and an oral LD50 calculated value of 1772mg/kg, with a toxicity class of 4. These results indicate the antioxidative and protective effects of ferulic acid in oxidative brain injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.