Abstract
Calbindin-D28k is a calcium-binding protein that mediates intracellular calcium concentrations and exerts a neuroprotective effect against ischemic injury. Ferulic acid provides a neuroprotective effect against focal cerebral ischemia through its anti-oxidative and anti-inflammatory mechanisms. In this study, we investigated whether ferulic acid regulates calbindin-D28k expression during focal cerebral ischemia and glutamate treatment-induced neuronal cell death. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Ferulic acid (100 mg/kg, i.v.) or vehicle was immediately administered after MCAO, and brain tissues were isolated 24 h after MCAO. RT-PCR and Western blot analyses showed a decrease in calbindin-D28k in MCAO-operated animals. We found that ferulic acid treatment prevented the MCAO-induced decrease in calbindin-D28k expression. Glutamate exposure elevated the intracellular calcium levels in cultured hippocampal cells, and ferulic acid prevented the glutamate exposure-induced increase in calcium levels. Moreover, ferulic acid also attenuated the glutamate toxicity-induced decrease in calbindin-D28k. Taken together, these in vivo and in vitro results demonstrate that ferulic acid regulates calbindin-D28k expression in neuronal cell injury. Therefore, these findings suggest that ferulic acid exerts a neuroprotective effect by modulating calbindin-D28k expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.