Abstract

Honey is regarded as a valuable food commodity which has many and varied components, including phenolic compounds. Ferulic acid (FA) is one of these compounds, which possesses activities such as antioxidant, anti-inflammatory, anti-diabetic, haemolytic, antiviral, anti-cancer, etc. In view of these unique characteristics, a quick, sensitive, simple and inexpensive method for FA identification is required. This research developed a novel electrochemical sensor for measuring FA in honey samples. The sensor utilizes a C-C3N4/Li2CoMn3O8 nanocomposite modified carbon paste electrode (C-C3N4/LCMO/CPE) to enhance the sensitivity and detection. The synthesized nanocomposite exhibits remarkable properties, featuring an abundance of electrochemically active sites and enhanced electron transfer rates, making it ideal for developing advanced electrochemical sensors. The XRD, SEM and EDX analysis were used to examine and look like the synthesised nanocomposite structure. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were used to evaluate the electrochemical behavior of C-C3N4/LCMO/CPE sensor for FA detection and optimized by adjusting pH, and potential scan rate. FA was measured in a phosphate buffered saline (PBS; 0.1 M, pH 4.0) by DPV with the detection limit of 3.6 nM and quantitative limit of 0.009 µM in the linear response ranges of 0.009–3.000 and 5.00–100 µM. Chronoamperometry was utilized to calculate the diffusion coefficient of FA (D = 3.45 (±0.11) × 10−6 cm2.s−1) on the surface of the C-C3N4/LCMO/CPE, as well as the electron transfer coefficient (α = 0.68). The sensor’s high sensitivity for accurately assessing FA in real samples was demonstrated by recovery values ranging from 96.96 to 102.36 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.