Abstract
Ferulic acid (FA) has potential therapeutic effects in multiple diseases including cardiovascular diseases. However, the effect and molecular basis of FA in heart failure (HF) has not been thoroughly elucidated. Herein, we investigated the roles and mechanisms of FA in HF in isoproterenol (ISO)-induced HF rat model. Results found that FA ameliorated cardiac dysfunction, alleviated oxidative stress, reduced cell/myocardium injury-related enzyme plasma level, inhibited cardiocyte apoptosis in ISO-induced HF rat models. Moreover, FA reduced the co-localization of Keap1 and nuclear factor-E2-related factor 2 (Nrf2) in heart tissues of ISO-induced HF rats, and FA alleviated the inhibitory effects of ISO on expressions of p-Nrf2, heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). Additionally, Nrf2 signaling pathway inhibitor ML385 showed adverse effects. FA weakened the effects of ML385 in ISO-induced HF rat models. Collectively, FA ameliorated HF by decreasing oxidative stress and inhibiting cardiocyte apoptosis via activating Nrf2 pathway in ISO-induced HF rats. Our data elucidated the underling molecular mechanism and provided a novel insight into the cardioprotective function of FA, thus suggested the therapeutic potential of FA in HF treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.