Abstract

Only limited information is available in the research area on the effect of elevated CO2 concentration ([CO2]) and air temperature (Tair) on the fertilizer N uptake by rice. This study was conducted to investigate changes in rice uptake of N derived from fertilizer (NDFF) and soil (NDFS) as well as fertilizer N uptake efficiency (FUE) with elevated [CO2] and Tair in two soils with different fertility. Rice (Oryza sativa L.) plants were grown with 15N-urea for two growing seasons (2007 in the less fertile and 2008 in the more fertile soil) in temperature gradient chambers under two (ambient and elevated) levels of [CO2] and Tair regimes. At harvest, dry matter (DM) and N uptake amount of rice compartments (root, shoot, and grain) were determined. The DM of whole rice increased (P < 0.01) with co-elevation of [CO2] and Tair in both years (by 28.0 % in 2007 and by 27.4 % in 2008). The DM in 2008 was greater than that in 2007 by 48.1 to 63.1 % probably due to better soil fertility as well as longer sunshine hours (456 h vs. 568 h). Co-elevation of [CO2] and Tair increased total N uptake, NDFF, and NDFS by 19.4 to 29.1 % in general compared to the ambient conditions. The FUE increased with co-elevation of [CO2] and Tair from 46.5 to 59.5 % in 2007 and from 36.7 to 43.8 % in 2008. The projected global warming with elevated [CO2] is expected to increase FUE via enhanced DM accumulation with less increments in the soils that have higher indigenous soil N availabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.