Abstract

ABSTRACT Ingestion in food is a major pathway of cadmium (Cd) exposure for humans. It is therefore desirable to ensure that Cd concentrations in crops that enter the human food chain do not increase to levels that may lead to health risks. Phosphorus fertilizers contain Cd as a contaminant at levels varying from trace amounts to as much as 300 mg Cd kg–1 of dry product and therefore can be a major source of Cd input to agricultural systems. Fertilization can influence Cd accumulation in crops by direct Cd addition and by indirect effects on soil pH, ionic strength, Zn concentration, rhizosphere chemistry, microbial activity, and plant growth. Cadmium will accumulate in the soils from fertilizer applications if the amount of Cd added in fertilizer is greater than the amount of Cd removal, whether in harvested crop removal or other loss pathways such as leaching, erosion, or bioturbation. Assessment of the impact of fertilizer management practices on the risk of Cd toxicity to the soil ecosystem and the risk of movement of Cd into the human diet must consider both the direct influence of Cd addition as a fertilizer contaminant and the indirect effects of fertilizer application on Cd phytoavailability. Cadmium accumulation in soils and crops can be minimized by adoption of management practices that improve fertilizer-use efficiency while minimizing Cd input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call