Abstract

Soil aggregates are extremely vulnerable to agricultural intensification and are important drivers of soil health, microbial diversity, and biogeochemical cycling. Despite its importance, there is a dearth of studies revealing how fertilization regimes influence diazotrophic community behind soil aggregates, as well as the potential consequences for crop yields. To do this, a two-decade fertilization of wheat-maize intercropping field experiment was conducted in Loess Plateau of China semiarid area under three treatments: no fertilizer, chemical and organic fertilizer. Moreover, we categorized soil aggregates as large macroaggregates (>2 mm), medium macroaggregates (1–2 mm), small macroaggregates (0.25–1 mm), microaggregates (< 0.25 mm) and rhizosphere soils aggregates. We found that soil aggregates exerted a much more influence on the nifH gene abundance than fertilization practices. Particularly, nifH gene abundance has been promoted with increasing the size of soil aggregates fraction without blank soil in the organic fertilization while its abundance presented contrast patterns in the chemical fertilization. Bipartite association networks indicated that different soil aggregates shaped niche differentiation of diazotrophic community behind fertilization regimes. Additionally, we found that organic fertilization strengthens the robustness of diazotrophic communities as well as increases the complexity of microbial networks by harboring keystone taxa. Mantel test results suggested that specific soil factors exerted more selective power on diazotrophic community and nifH gene abundance in the chemical fertilization. Furthermore, β-diversity and nifH gene abundance of diazotrophic communities in the soil microaggregates jointly determine the crop yields. Collectively, our findings emphasize the key role of functional community diversity in sustaining soil cycling process and crop yields under long-term fertilization, and facilitate our understanding of the mechanisms underlying diazotrophic community in response to agricultural intensification, which could pave the way to sustainable agriculture through manipulating the functional taxa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.