Abstract
Mass mortality of the sea urchin Diadema antillarum due to disease outbreaks in 1983 and 1991 decimated populations in the Florida Keys, and they have yet to recover. Here, we use a coupled advection-diffusion and fertilization-kinetics model to test the hypothesis that these populations are fertilization limited. We found that fertilization success was ≥ 96% prior to the first disease outbreak, decreased substantially following recurrent disease to 3%, and has since remained low. By investigating the combined effects of physical factors (population spatial extent and current velocity) and sea urchin behavior (aggregation) on density-dependent fertilization success, we show that fertilization success at a given density increases with increasing population spatial extent and decreasing current velocity, and is greater under simulated aggregation behavior of D.antillarum. However, at present population densities, the increase in fertilization success due to aggregation is < 1%, even under the most favorable physical conditions. These results indicate that populations are severely fertilization limited, and that Allee effects at low population density will continue to limit recovery. Our results can serve as a practical guide to managers in the development of coral reef restoration strategies, including the design of a D.antillarum restocking program to obtain reproductively viable populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.