Abstract

In managed orchards, fertilization brings out not only high productivity expectations but also severe environmental pollution. Because economic profit takes priority over environmental cost, increasing amounts of fertilizer have been used in mature subtropical Torreya grandis orchards. However, given the magnitude of global nitrogen deposition, it’s worth considering whether heavy fertilizer treatment is necessary. To elucidate the balance between T. grandis nutrient demands and fertilizer supply, we determined the C, N, and P concentrations of foliar and soil ([C], [N], [P]) at 9 orchards undergoing long-term fertilizer treatments in two scenarios of N and N + P addition with different intensity. After documenting the dynamic variation of plant growth, nutrients characteristic, and the corresponding resorption efficiency, we found that excessive N addition interfered T. grandis’ sensibility to P availability in this N-enrichment area, leading to an increasing foliar [P] and resorption efficiency (PRE) and decoupling plant C:N:P ratios. As a result, enhanced fertilizer supply failed to improve carbon accumulation, plant growth, and yield effectively. These results demonstrate that extra fertilization in the N-saturated study area highly reduced the economic and ecological efficiency of fertilizers. Thus, our research suggests that N addition in the studied orchards should be rejected, and we recommend organic management as a more conducive method to achieve sustainable development.

Highlights

  • Torreya grandis (T. grandis) is an old relict species within the family of Taxaceae that is endemic in China, often referred to as Chinese Torreya

  • To solve the above problems, we examined the C, N, and P stoichiometry of soil, as well as the green and senescent leaf of mature T. grandis trees, in nine orchards with varying N and

  • The study was conducted at the origination locale of T. grandis—Chinese Torreya Forest

Read more

Summary

Introduction

Torreya grandis (T. grandis) is an old relict species within the family of Taxaceae that is endemic in China, often referred to as Chinese Torreya. It has been one of the most economically important tree species in the subtropical region of China. Trees in the community area are considered ‘living fossils’ because they originated from the application of grafting and artificial selection techniques in ancient China. Many of those trees are over one thousand years economic old but still sustain a high yield of seed production. The old Torreya plantation in the Kuaijishan Ancient Chinese Torreya Community is facing severe degradation due to nature aging, climate change, and inappropriate management, such as overfertilization

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call