Abstract

In birds in the reproductive season, an egg is ovulated without cumulus cells from the largest follicle with the highest hierarchy in the ovary. The outermost part of the ovulated eggs is the perivitelline layer, a glycoprotein matrix consisting of a few ZP-glycoproteins. The fertilization starts from sperm penetration of the perivitelline layer predominantly in the germinal disc region, followed by uptake of the sperm into the egg, and goes through by the fusion of sperm male pronucleus with the female pronucleus in the egg. A series of these fertilization steps occurs in the infundibulum of the oviduct within a short period after ovulation. Some pioneering microstructural studies using electron microscopy and supporting biochemical data from later studies indicate that, in avian fertilization, sperm interacts with the perivitelline layer covering the germinal disc, locally degrade and dissolve the matrix of the perivitelline layer, and penetrate it through the hole made proteolytically at the sperm-binding site on the perivitelline layer. Several molecules and structures presumably involved in the sperm-perivitelline interaction have been characterized, especially sperm proteases and their targets in the egg perivitelline layer. On the other hand, no molecules involved in the sperm-egg membrane fusion for the male pronucleus uptake into the egg have yet been identified or characterized and, moreover, no orthologue but one have been annotated so far in the chicken genome for the mouse genes involved in the sperm-egg membrane fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call