Abstract

Because of its function, the X chromosome has a special status in mammalian genomes, with the specific occurrence of genes that influence both female and male fertility. Long ago, the XO karyotype (Turner syndrome) was associated with infertility, proving the correlation between normal X chromosome dosage and normal female fertility. Nevertheless, the search for specific X-borne fertility genes was not completely successful and suggested, instead, that female X-linked fertility, for example, depends upon groups of X-linked genes. Conversely, X-linked hyperfertility has been observed in sheep, where a mutation in BMP15 leads to a hyperfertile phenotype, but only in the heterozygous state. Many male fertility genes map to the X chromosome, consistent with a genetic model developed in the early 1990s. Ironically, NR0B1 (formerly DAX1), once presented as the paradigm of genes responsible for ovarian development and function, is probably one of these male fertility factors and is active in the maintenance of spermatogenesis. Indeed, duplications of this gene on the human X chromosome lead to XY sex reversal, as NR0B1 is able to counterbalance the effect in humans. Nevertheless, invalidation experiments in mice demonstrate the effect of this factor on male germ-cell production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.