Abstract

We present the ferroresonance overvoltage mitigation concerning the power systems of the grid-connected wind energy conversion systems (WECSs). WECS is considered based on a doubly-fed induction generator (DFIG). Ferroreso-nance overvoltage associated with a single-pole outage of the line breaker is mitigated by fast regulating the reactive power using the static compensator (STATCOM). STATCOM controller is introduced, in which two incorporated proportional-inte-gral (PI) controllers are optimally tuned using a modified flower pollination algorithm (MFPA) as an optimization technique. To show the capability of the proposed STATCOM controller in mitigating the ferroresonance overvoltage, two test cases are introduced, which are based on the interconnection status of the power transformer used with the grid-connected DFIGs. The results show that the ferroresonance disturbance can occur for the power transformers installed in the wind farms although the transformer terminals are interconnected, and neither side of the transformer is isolated. Furthermore, as a mitigation method of ferroresonance overvoltage, the proposed STATCOM controller succeeds in improving the system voltage profile and speed profile of the wind turbine as well as protecting the system components against the ferroresonance overvoltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.