Abstract

Ferroptosis is a form of regulated cell death resulting from iron accumulation and lipid peroxidation. Iron dyshomeostasis and peroxidation damage of neurons in some particular brain regions are closely related to a wide range of neurodegenerative diseases known as "tauopathies," in which intracellular aggregation of microtubule-associated protein tau is the common neuropathological feature. However, the relationship between ferroptosis and tau aggregation is not well understood. The current study demonstrates that erastin-induced ferroptosis can promote tau hyperphosphorylation and aggregation in mouse neuroblastoma cells (N2a cells). Moreover, ferroptosis inhibitor ferrostatin-1 can alleviate tau aggregation effectively. In-depth mechanism research indicates that activated glycogen synthase kinase-3β (GSK-3β) is responsible for the abnormal hyperphosphorylation of tau. More importantly, proteasome inhibition can exacerbate tau degradation obstacle and accelerate tau aggregation in the process of ferroptosis. Our results indicate that ferroptosis can lead to abnormal aggregation of tau protein and might be a promising therapeutic target of tauopathies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.