Abstract
High levels of circulating catecholamines cause cardiac injury, pathological remodeling, and heart failure, but the underlying mechanisms remain elusive. Here we provide both in vitro and in vivo evidence that excessive β-adrenergic stimulation induces ferroptosis in cardiomyocytes, revealing a novel mechanism for catecholamine-induced cardiotoxicity and remodeling. We found that isoproterenol, a synthetic catecholamine, promoted glutathione depletion and glutathione peroxidase 4 (GPX4) degradation in cardiomyocytes, leading to GPX4 inactivation and enhanced lipid peroxidation. Isoproterenol also promoted heme oxygenase 1 (HO-1) expression by downregulating the transcription suppressor BTB and CNC homology 1 (Bach1), leading to increased labile iron accumulation through heme degradation. Moreover, isoproterenol markedly induced the accumulation of free iron and lipid reactive oxygen species (ROS) in the mitochondria, while targeted inhibition of iron overload and ROS accumulation within mitochondria effectively inhibited ferroptosis in cardiomyocytes. Importantly, isoproterenol administration markedly induced ferroptosis in the myocardium in vivo, associated with elevated non-heme iron accumulation driven by HO-1 upregulation. Strikingly, blockade of ferroptosis with ferrostatin-1 or inhibition of HO-1 activity with zinc protoporphyrin (ZnPP) effectively alleviated cardiac necrosis, pathological remodeling, and heart failure induced by isoproterenol administration. Taken together, our results reveal that catecholamine stimulation primarily induces ferroptotic cell death in cardiomyocyte through GPX4 and Bach1-HO-1 dependent signaling pathways. Targeting ferroptosis may represent a novel therapeutic strategy for catecholamine overload-induced myocardial injury and heart failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.