Abstract

A symmetry-guided approach for designing and tailoring magnetoelectric and multiferroic hexaferrites is proposed. A group-theoretical study of the magnetoferroelectric structures of a hexagonal ferrite was carried out. The results were applied to M-, W- and Z-type hexaferrites. It is shown that the magnetic structure cannot be collinear in the main magnetic phase, with the direction of the magnetic moment along the hexagonal axis. Magnetic sublattices are shown in which cation substitution should lead to the formation of a multiferroic state. A thermodynamic model of a hexagonal ferroelectric ferrimagnet was constructed, in which isostructural phase transitions were observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call