Abstract

In the present work, we have fabricated Sn0.91Co0.05Ce0.04O2 (SCC54) and Sn0.91Fe0.05Ce0.04O2 (SFC54) nanorods by a chemical route similar to sol-gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, photoluminescence (PL) and magnetic measurements are used to characterize these nanorods. XRD pattern shows the polycrystalline nature of rods and TEM confirms that the diameter of rods lie in the range of 15-20 nm and length 100-200 nm. It is observed that on Ce3+ co-doping, nanoparticles assembled themselves into rod like structures. The SCC54 and SFC54 specimens exhibit room temperature ferromagnetism. Their saturated magnetic moment and phase transition temperature is sensitive to their size and stoichiometric ratio. Raman spectroscopy shows an intensity loss of classical cassiterite SnO2 vibration lines, which is indication of significant structural modifications like crystallinity and nano metric size effects on the vibrational properties. From PL spectra, an intense blue luminescence centred at a wavelength of 532 nm is observed in the prepared SnO2 nanostructures, attributed to oxygen-related defects, introduced during the growth process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.