Abstract

Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (VO2+) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from VO2+ incorporation. The effect of VO2+ on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of VO2+ makes the Mn empty 3d-t2g minority state broadened, and a t2g-VO2+ hybrid level at the conduction band minimum forms. The presence of VO2+ can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.