Abstract
On the basis of density functional theory (DFT) methods, we study the magnetic properties and electronic structures of the armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes with various vacancies and boron substitution. The calculation results indicate that a Si vacancy could induce the magnetic moments in both armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes, which mainly arise from the p orbital of C atoms surrounding Si vacancy, leading to the ferromagnetic coupling. However, a C vacancy could only bring about the magnetic moment in armchair (4, 4) single-wall SiC nanotube, which mainly originates from the polarization of Si p electrons, leading to the antiferromagnetic coupling. In addition, for both kinds of single-wall SiC nanotubes, magnetic moments can be induced by a boron atom substituting for C atom. When two boron atoms locate nearest neighbored, both kinds of single-wall Si(C, B) nanotubes exhibit antiferromagnetic coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.