Abstract

Using the constrained-path Monte Carlo method, we studied the magnetic properties of the two-dimensional periodic Anderson model for electron fillings between 1/4 and 1/2. We also derived two effective low energy theories to assist in interpreting the numerical results. For 1/4 filling we found that the system can be a Mott or a charge transfer insulator, depending on the relative values of the Coulomb interaction and the charge transfer gap between the two non-interacting bands. The insulator may be a paramagnet or antiferromagnet. We concentrated on the effect of electron doping on these insulating phases. Upon doping we obtained a partially saturated ferromagnetic phase for low concentrations of conduction electrons. If the system were a charge transfer insulator, we would find that the ferromagnetism is induced by the well-known RKKY interaction. However, we found a novel correlated hopping mechanism inducing the ferromagnetism in the region where the non-doped system is a Mott insulator. Our regions of ferromagnetism spanned a much smaller doping range than suggested by recent slave boson and dynamical mean field theory calculations, but they were consistent with that obtained by density matrix renormalization group calculations of the one-dimensional periodic Anderson model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.