Abstract

The electronic structure and magnetic properties of nonmagnetic phosphorus doped ZnO are investigated using first-principles calculation. Both generalized gradient approximation (GGA) and GGA + U calculations show that each substitutional P atom in ZnO induces a magnetic moment of about 1.0 μ B, which come mainly from the partially filled p orbitals of the substitutional P and its 12 second neighboring O atoms. The magnetic coupling between the moments induced by P doping is ferromagnetic. The calculated electronic structures indicate that the ferromagnetic coupling can be explained in terms of the two band coupling model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call