Abstract

The magnetic coupling between doped Mn atoms in clusters as well as crystals of GaN has been studied from first principles using molecular orbital theory for clusters and linearized muffin tin orbitals-tight binding formulation (LMTO-TB) for crystals. The calculations, based on density functional theory and generalized gradient approximation for exchange and correlation, reveal the coupling to be ferromagnetic with a magnetic moment ranging from 2.0 to 4.0 Bohr magnetons per Mn atom depending on its environment. Mn atoms also tend to cluster and bind more strongly to N atoms than to Ga atoms. The significant binding of Mn to GaN clusters further indicates that it may be possible to increase the Mn concentration in GaN by using a porous substrate that offers substantial interior surface sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.