Abstract

Theoretically, the so-called zigzag edge of graphenes provides localized electrons due to the presence of flat energy bands near the Fermi level. Spin interaction makes the localized spins strongly polarized, yielding ferromagnetism. However, in most experimental studies, ferromagnetism has been observed in uncontrollable and complicated carbon-based systems. Here, we fabricate graphenes with honeycomblike arrays of hexagonal nanopores, which have a large ensemble of hydrogen-terminated and low-defect pore edges that are prepared by a nonlithographic method (nanoporous alumina templates). We observe large-magnitude ferromagnetism derived from electron spins localizing at the zigzag nanopore edges. This promises to be a realization of graphene magnets and novel spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call