Abstract

We present an Anderson-type model Hamiltonian with exchange coupling between the localized spins and the confined holes in the quantum dots to study the ferromagnetism in diluted magnetic semiconductor (DMS) quantum dot arrays embedded in semiconductors. The hybridization between the quantum-confined holes in the DMS quantum dots and the itinerant holes in the semiconductor valence band makes hole transfer between quantum dots, which can induce the long range ferromagnetic order of the localized spins. In addition, it makes the carrier spins both in the DMS quantum dots and in the semiconductors polarized. The spontaneous magnetization of the localized spins and the spin polarization of the holes are calculated using both the Weiss mean field approximation and the self-consistent spin wave approximation, which are developed for the present model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call