Abstract

Room-temperature ferromagnetism has been observed in nanoparticles $(7--30\phantom{\rule{0.3em}{0ex}}\mathrm{nm}\phantom{\rule{0.2em}{0ex}}\mathrm{diam})$ of nonmagnetic oxides such as ${\mathrm{CeO}}_{2}$, ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$, $\mathrm{ZnO}$, ${\mathrm{In}}_{2}{\mathrm{O}}_{3}$, and ${\mathrm{SnO}}_{2}$. The saturated magnetic moments in ${\mathrm{CeO}}_{2}$ and ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$ nanoparticles are comparable to those observed in transition-metal-doped wideband semiconducting oxides. The other oxide nanoparticles show somewhat lower values of magnetization but with a clear hysteretic behavior. Conversely, the bulk samples obtained by sintering the nanoparticles at high temperatures in air or oxygen became diamagnetic. As there were no magnetic impurities present, we assume that the origin of ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of nanoparticles. We suggest that ferromagnetism may be a universal characteristic of nanoparticles of metal oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.