Abstract
Based on first-principles calculations, the electronic, magnetic, and topological characters of manganese (Mn) doped topological insulator Bi2Te3 were investigated. The Mn substitutionally doped Bi2Te3, where Mn atoms tend to be uniformly distributed, was shown to be p-type ferromagnetic, arising from hole-mediated Ruderman-Kittel-Kasuya-Yosida interaction. Mn doping leads to an intrinsic band splitting at Γ point, which is substantially different from that of nonmagnetic dopant. The topological surface state of Bi2Te3 is indeed gapped by Mn doping; however, the bulk conductance limits the appearance of an insulating state. Moreover, the n-type doping behavior of Bi2Te3 is derived from Mn entering into the van der Waals gap of Bi2Te3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.