Abstract

The geometrical structure of CdSe was optimized by using the ultrasoft pseudopotential method of a total energy plane wave based on density functional theory. The band structure, density of states, and optical properties were calculated and discussed in detail. The Mn-doped CdSe is found to be a half-metallic ferromagnet with 100% carrier spin polarization at the Fermi level. At a Mn concentration of 12.5%, the calculated total energy of the spin-polarized state is 614 meV lower than that of the nonspin-polarized state. The net magnetic moment of 5 μ B is found per supercell for 12.5% Mn-doped CdSe. The estimated Curie temperature of 748.6 K for Mn-doped CdSe is above room temperature. The ferromagnetic ground state in Mn-doped CdSe can be explained in terms of the p − d hybridization mechanism. These results suggest that Mn-doped CdSe may present a promising dilute magnetic semiconductor, and may have potential applications in the field of spintronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.