Abstract

It remains urgent challenges to adopt suitable strategies to consume unwanted microwave pollution emitted by high-tech electronic devices satisfactorily. Confronted with narrow effective absorption bandwidth (EAB) and high filler loading bottlenecks of MXene-Based microwave absorber, herein, we employ Lewis molten salt etching approach to both exfoliate Ti3AlCN powders into Ti3CNCl2 suspension and intercalate ferromagnetic composition into interlamination simultaneously. By utilizing the crosslinking effect of dopamine, the Ti3CNCl2 are anchored on the surfaces of graphene oxide (GO) nanosheets, constructing interconnecting microstructure. Both the 3D conductive network and the modification of MXene manifest crucial impacts on enhancing microwave absorption performance of the resulting ultra-lightweight reduced GO (RGO)-based aerogel. The minimum intensity of reflection loss achieves −62.62 dB with the absorber mass loading of 0.7 wt%. Remarkably, more than 90% of the incident microwave is qualified to be absorbed over the whole Ku band. The EAB is broadened while tailoring the thickness to 3 mm, ranging from 10.2 to 18 GHz. Besides, the aerogel presents valuable thermal insulation properties. Our methodology of synthesizing MXene/RGO aerogel not only provides promising insights into microstructural construction but also endows the possibility for integrating thermal insulation property towards next-generation high-performance microwave absorption devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call