Abstract

The room-temperature ferromagnetic resonance (FMR) spectra of γ-Fe2O3, CrO2, and barium ferrite particulate magnetic recording tapes have been measured at microwave frequencies of 9.35 and 35 GHz for various orientations of the static and high-frequency magnetic fields with respect to the tape. For CrO2 tapes, the influence of the width of the angular distribution of the particle orientations on the FMR spectra has been studied from the nearly isotropic case up to the highly oriented case. Hysteretic behavior for a CrO2 tape as well as the effect of tape calendering for a γ-Fe2O3 tape has been observed by FMR. Experimental results are found to be in reasonable agreement with results of theoretical calculations based on a model of an ellipsoidal single-domain particle with both shape and magnetocrystalline anisotropy. Magnetostatic interaction inside the magnetic film has been introduced by expressing the total magnetostatic energy as a combination of a part dependent on particle shape and a part dependent on the shape of the tape. As a result of a comparison of experimental data with calculated data from the model, the magnetocrystalline easy axis of the CrO2 particles is found to be parallel with the particle axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.