Abstract
The magnetic properties of cobalt spherical nanoparticles (∼ 5–9 nm in size) in a polymer shell are investigated using ferromagnetic resonance (FMR) spectroscopy. The metal-polymer complex is prepared through the frontal polymerization of the cobalt acrylamide (CoAAm) complex, followed by the thermolysis at a temperature of 643 K. Analysis of the ferromagnetic resonance spectra demonstrates that the material has a high blocking temperature of ∼700 K. The anisotropy constant equal to 0.5 erg/cm3 is somewhat larger than the anisotropy constants characteristic of cobalt macrostructures. This difference is associated with the predominance of the surface anisotropy of nanoparticles. The surface anisotropy constant is calculated to be 0.17 erg/cm2, and the anisotropy field is determined to be ∼350 Oe. It is revealed that the polymer shell affects the magnetic properties of nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.